© ISO/IEC ISO/IEC 10746-3: 1995

Annex

A Formal computational supertype/subtype rules

This annex forms an integral part of this Recommendation | International Standard. It defines formal subtyping rules for
computational interface signatures. The types of computational interface signatures can be higher order as implied by 7.2.2.4
on parameter rules. This annex only formalizes a first-order subset of the subtyping rules — formalizing higher order
features of computational interface signature types is left for further study.

The annex defines a first order type system that consists of a simple type language together with type equality rules and
signature subtyping rules. It also describes a sound and complete type checking algorithm for the type system. Signal
signature interface types, operation interface signature types and stre am interface signature types are defined using the type
language. Since stream interface signature subtyping is only partially defined in 7.2.4.2, this annex only formalizes the
subtyping rule that applies between corresponding flows.

A.l Notations and conventions

The following notations are used
— q, B, Y, etc., denote types;

— t, s, etc., denote identifiers for types (i.e. type variables) and ground types (i.e., type constants); the set of
type variables (and type constants) is callgg

— a, b, ¢, g, a, a, etc., denote identifiers daibelsfor elements of structures in the type language; the set of
labels is called\;

— a[P/t] denotes the substitution Bffor tin a;

— Nil denotes a predefined type constant.

A.2 Type system

The type system contains type constants, functions, cartesian products, records, tagged unions recursive definitions. The
type languageType is given by the grammar in figure 1.

a = t

| apx..xa,

| By:ag .., a,:a,0
| [CiVar o Gt VR

| pto

Figure 1 - Abstract syntax for type declararations

ITU-T Rec. X.903 (199559

ISO/IEC 10746-3: 1995 © ISO/IEC

The ground types are callédd (top) dndbottom). They play the roles of greatest and least elements in the subtype
relation, respectively. Functions are denoted thus: B. Cartesian products are denoted thysx ... x a,, . Unions are
denoted thudc; : v, ..., G, : V.. Records are denoted thi; : Ay, ..., a,: o,

M is a variable binding operator. Recursive types can be constructed by binding types to identifiers and referencing an
identifier for one type in another.

Parentheses are used to determine precedence where necessary. In their-atmsesamsates to the right, and the scoping
of 1 extends to the right as far as possible.

The set of free variables occuringaris denoted thus:V (a).

A.2.1 Typing rules
This clause gives type equality rules and subtyping rules for the language given.

A typea is contractivein the type variablg denotedx ! t, if eithert does not occur free im, or a can be rewritten via
unfolding as a type of one of the following forms

— 0 - 0y

— By :dyq .., 8,00

— [CiVy o GV

— Oy X.X0,

The type equality rules are given in figure 2. Type equality is denoted by

(E.1) a=a

(E.2) a=p0 B=a

(E.3) a=B,B=y0 a0y

(E.4) O3 =00 B =B 0 a3 - Br=0p - By

(E.5) o=B0 pta=putp

(E.6) Oie{l,..,0,=B30 ag;X..xa, =Py % ... x B,
(E.7) Oie{l,...3,0,=060 & :0q..,a,: 0,3 :B,...8: B0
(E.8) Oie{l,..,,0,=30 [a;: 0y, .., @y 0] =[a1: By, - s80: Bl
(E.9) putt=0

(E.10) afut.a/t] = pt.a

(E.11) a[B/t] = By, a[B /] =B a1 tD B =B,

Figure 2 - Type equality rules

The subtyping rules are given in the form of inference rules on judgments that resemble a Prolog program. Judgements are
of the form:I" - a < 3, wherel is a set of subtyping assumptions on type variables of the {&yms,, ..., t,<s}. A
typical rule may take the following form

Mo, <B,M~a,<B,0TM~as<p.

Informally, this means that in order to determine whether a <3 holds, one must first try to determine whether
It a4 < By andl = a,< B,. If these sub-goals are reached then one may conclude ihatsubtype oB.

70 ITU-T Rec. X.903 (1995)

© ISO/IEC ISO/IEC 10746-3: 1995

The subtyping rules are given in figure 3. It can be saidcthiata subtype of if O~ a <3 can be derived using the
subtyping rules and the equality rules.

(S.1) o=B0 F—a<p

(S.2) NrNo<B,Fr=psy0 M —~oasy

(S.3) t<sOrQ M-t<s

(S.9) rN-o0<a

(S.5) Fr+~as<T

(S.6) Fr=o,<0, FT=PB1<B0 Moy - Brga, » B

(S.7) Oee{l, ..., T—o;<BOTM-By:dy, .., &y d KBy By, .. ,8,: B0
with n<m

(S.8) Oee{l, ..., T—o;i<B 0T =[a:0q ay: 0] <[a;: By a: Bl
with n<m

(S.9) Oee{d, ...}, T, SBOTMN 0 X X0, S By X .. X By

(S.10) ri{t<ss}a<B0O T pta<psP

with t only ina; s only inf3, t, s notin’".

Figure 3 - Subtyping rules

A.2.2 Type definitions

Elements ofType are defined by sets of mutually dependent equations, modelled as well-formed environments. An
environment is a finite mapping between type variables and types belondinwhereT is the non-recursive subset of
Type A well-formed environmenY is an environment such that the free variables of adyassociated with a variabie

in the domain off all belong to the domain of. Intuitively, each type variable in an environment represents a type. The
associations between type variables and elemeiitgian environment can be understood as mutually dependent defining
equations for the corresponding types.

Formally, letY, be the set of well-formed environments and definA - B as a partial function fror to B with finite
domain;FV(a) denotes the set of free variables occurring)in
Yui = aqef{ Y Tyar = Type| O t, t' O dom(Y), t' O FV (Y (t)) O t' Odom(Y)}

LetY={tb a,tlH ay, .., tg agt. Y\t denotes the following environment:
Y\t =ger{ty b 0g g g}

The type associated with a type variabla the context of a well-formed environmeYi{t 0 dom(Y)) is defined to be
Val (t, Y), whereVal is the function on types and environments defined recursively in figure 4. Thus any elemgye of
can be defined agal (t, Y), whereY is a well-formed environment and] dom(Y).

A.2.3 An algorithm for type checking

This clause defines an algorithm for type checking which is sound and complete with respect to the type equality and
subtyping rules above. The algorithm involves two well-formed environregatsde, such thatlon(g;) n dom(ey) = O

(the types to be compared are associated with two variables gremith the other ig,). It is described as a set of inference

rules involvinge = ;€4 O €, and a sek of the form §; <s,,,t, <s,} which records inclusion of variables discovered
during execution of the algorithm. An inference rule corresponds to a logical implicatjodgaimentsof the form

ITU-T Rec. X.903 (1995)1

ISO/IEC 10746-3: 1995 © ISO/IEC

(IT.1) Val (00, V) = O

(IT.2) Val (T,Y) =T

(IT.3) val (Nil, Y) = Nil

(IT.4) Val (@ - B,Y) =Val(a,Y) - Val(B,Y)

(IT.5) Val (&, :aq,...,a,:0,00Y) =@, : Val @, V), ... ,a,: Val (a,, Y)O
(IT.6) Val (a;: 04, ..., a,: 0], Y)=[a,: Val (@, Y), ..., a,: Val (@, Y)]
(IT.7) Val (01 x ... x 0, Y)=Val (a4, Y) xVal (a,,Y)

(IT.8) if t 0 dom(Y) then Val (t,Y) =t

(IT.10) if t O dom(Y) then Val (t,Y) = pt.Val (Y (t), Y\ t)

Figure 4 - Semantics of interface type definitions

2, € a <B. A judgement intuitively captures the assertmi B holds in the context o ande. Initial judgements
{t1 s,,t;, <5} must be such thatt{, s,,t,, s} n dom(e) = [

The inference rules are given in figure 5. In figure, B 0 Type t, sdenote arbitrary variables,denotes variables not in

dont).

Given an initial goak, € - a < 3, the algorithm consists in applying the inference rules backwards, generating subgoals in
cases (rec), (fun), (rcd), (pro) and (uni). A tree of goals built in this way is called an execution tree. An execution tree is
always finite: ift < sis an assumption that is addedtdhent ands are type variables idom(g); also, the rules (fun), (pro),

(uni) and (rcd) reduce the size of the current goal by replacing it with subexpressions of the goal, and each application of
(rec) enlargeg.

An execution tresucceed# all the leaves correspond to an application of one of the rules (assmp), (bot), (top) or (var). It
fails if at least one leaf is an unfulfilled goal (i.e. if no rule can be applied to it). If the execution tree corresponding to the
goal [Je} a <[succeeds, this is noted, a < f3.

Given recursive typesandf3, such thatt = Val (1, 1) andp = Val (t,, &,) (¢, ande, as above) a subtyping relatia, is
induced by the algorithm by the following definitiam:<p B < at; <t).

(assmp) t<sO0xX0 X, e-t<s

(bot) e 0O<p

(top) Y easT

(var) 2, eu<u

(fun) T, e 0p<ay, T e <Py I el op - BrSay - Bs

(rcd) OO0, .., 2 ea;<B0 2, e By :ay,..,a,: 0, K@y : By ...,a: B0
with nsm

(uni) O O{1,...3, Z,e~o, <30 Z e-[ag:ayg, ., an: 0] <{a;: By s 8n: Bl
with nsm

(pro) OeO{1,...3, Z,e0; <30 Z,eag X xd, < By x ... X B,

(rec) sO{t<ss,ee)<se(90 %, et<s

Figure 5 - Type-checking inference rules

72 ITU-T Rec. X.903 (1995)

© ISO/IEC ISO/IEC 10746-3: 1995

This new subtyping relation coincides with the previous one, i.e.,the algorithm is sound and complete with respect to the
type equality and type subtyping rules:

— givena, BinT, if a <, B thena <gx B;

— givena, BinT, if a <z 3 thena <, B.

A.3 Signal interface signature types

Signal interface signature types are formalized by interpreting them ifyfielanguage. The set of signal interface
signature types is denotenotégpe;, Elements ofTypg;, are defined abstractly through the use of two functions:
intype: Type;q -~ Typeandoutype: Typg;j; — Type In a given signal interface signature tyjgypedescribes the set of
initiating signals, andutypedescribes the set of responding signals.

Elements offTypeassociated with a signal interface signature type througintipe and outypefunctions are defined by
well-formed environments with codomain the subsetTgpe defined by the grammar in figure 6, where labels

a,i {1, ...,q}, are supposed to be distinct. In effect,figure 6 provides an abstract syntax for signal interface signatures.
Labelsg; correspond to signal name&rg productions correspond to signal paramet®igsigproductions correspond to
individual signal signatures. The functional form adopted for individual signal signature highlights the analogy with
announcement signatures.

a = [: Sigsig, ..., g: Sigsid]
Sigssig = Arg - Nil
Arg = Nil [ty x ... x t,

Figure 6 - Abstract syntax for signal interface signature types

The subtyping relation on signal interface typgsis defined by:
Oy, 1, O Typgg 1y < 1, = haintypes 1pintype/\ b.outypesi,.outype

A4 Operation interface signature types

Operationalserverinterface signature types are formalized by interpreting them ifiythelanguage (operation client
interface signature types can be derived immediately by complementation). The set of operational server interface types is
notedType, (S). Elements oflype, (S are defined abstractly through the use of the funcippe Typeg, (S - Type

Elements ofType associated with an operation interface signature type througiptyygefunction are defined by well-
formed environments with codomain the subselygfedefined by the grammar in figure 7, where lalaels 0{ 1, ...,q},
are supposed to be distinct, and where labgisT{1, ...,q} are supposed to be distinct in the context oiCgsig
production.

a = [: Opsig, ..., g Opsid]
Opsig := Arg - Term| Arg — Nil
Term := [c,: Arg, ..., cq - Arg]
Arg = Nil [t x ... x t,

Figure 7 - Abstract syntax for operation interface signature types

In effect, figure 7 provides an abstract syntax for operation interface sign@pségproductions correspond to individual
operation signatures. Specificall@psig productions of the formirg — Termin figure 1 correspond to interrogations.

ITU-T Rec. X.903 (1995]3

ISO/IEC 10746-3: 1995 © ISO/IEC

Opsig productions of the formArg — Nil correspond to announcementsrg productions correspond to invocation
parametersTerm productions correspond to terminatioNd. on the left hand side of @psigproduction means that the
given invocation does not have any paramédédron the right hand side of @psigproduction (i.e, in an announcement
signature) means that no termination is expected. Labatsrrespond to operation names. Labglcorrespond to
termination names.

The subtyping relation on server operational interface tyfess defined by:
Og, 1L, OTypg (9, 11 <1, =y.optypes 1,.0ptype

A.5 Stream interface types

Defining complete signature subtyping rules for stream interfaces is beyond the scope of this Reference Model (see 7.2.4.2).
Note however that an individual flow signature type can be formalized by interpreting iflippgthanguage. Elements of
Typeassociated with a flow signature can be defined by well-formed environments with codomain the stipget of
defined by the grammar in figure 8, where lafelorresponds to the flow name.

a = (3 : Flowsig]
Flowsig ::= Arg - Nil
Arg = Nil | t

Figure 8 - Abstract syntax for stream interface signature types

The subtyping rule in clause 7.2.4.2 associated with corresponding flows (assuming they have the same causality) just
corresponds to the subtype relatignin this case.

A.6 Example

Consider the following server operation interface signature type definitions (i.e., the well-formed environment)
Y={tba,fp B}
where
O =gef (op:t - [ok: Nil, nok: Nil], factory: Nil - [ok:f] O
B =ges Chew: Nil - [ok:t] O
and wheré, f, (0 Tvar; op, factory, new; okandnok[A (op, factoryandneware operation namesk andnokare termination
names).

Intuitively, the environmenY corresponds to the definition of two typeandf.. f; is equipped with only one operatinaw

that takes no argument and returns a reference to an instance fQygemay imagine, for instance, tfias the type of

a factory object that creates objects with an interface ofttgmedemand, i.e.,on each invocation of operation mesv.
equipped with two operationsp andfactory. Operatiorop takes a reference to an instance of tyag argument: this is a

first instance of a recursive definition. Operatiaotorytakes no argument and returns a reference to an instance ff type
One may imagine for example that, for management purposes, each object with an interfadésoflbjpeon request (i.e.,

upon invocation of operatiofactory), to return a reference to the factory that created it. This is a second instance of a
recursive definition, since the definitionfpfefers ta.

Applying the definition ofval given above, definind; =4 { fi> B}, overloading the sign and using type equivalence
rule E.10 the following is obtained:
Valt, Y)=pt. Val(a,{ i B}
=put op: Vallt, Y7) - [ok Nil, nok: Nill,
factory. Nil - [ok: Val (f;, Y9)]O
=ut. Op:t - [ok Nil, nok: Nil],

74 ITU-T Rec. X.903 (1995)

© ISO/IEC ISO/IEC 10746-3: 1995

factory. Nil - [ok: p f.Val (8, 0)]0

= ut.[0p:t - [ok Nil, nok: Nil],

factory. Nil - [ok: p f.[hew: Nil - [ok: t]JO
=ut. Op:t - [ok Nil, nok: Nil],

factory. Nil — [ok : hew: Nil - [ok: {00

ITU-T Rec. X.903 (1995]5

ISO/IEC 10746-3: 1995 © ISO/IEC

76 ITU-T Rec. X.903 (1995)

