
© ISO/IEC ISO/IEC 10746-3: 1995

ITU-T Rec. X.903 (1995)69

Annex

A Formal computational supertype/subtype rules

This annex forms an integral part of this Recommendation | International Standard. It defines formal subtyping rules for
computational interface signatures. The types of computational interface signatures can be higher order as implied by 7.2.2.4
on parameter rules. This annex only formalizes a first-order subset of the subtyping rules — formalizing higher order
features of computational interface signature types is left for further study.

The annex defines a first order type system that consists of a simple type language together with type equality rules and
signature subtyping rules. It also describes a sound and complete type checking algorithm for the type system. Signal
signature interface types, operation interface signature types and stre am interface signature types are defined using the type
language. Since stream interface signature subtyping is only partially defined in 7.2.4.2, this annex only formalizes the
subtyping rule that applies between corresponding flows.

A.1 Notations and conventions

The following notations are used

— α, β, γ, etc., denote types;

— t, s, etc., denote identifiers for types (i.e. type variables) and ground types (i.e., type constants); the set of
type variables (and type constants) is calledTvar;

— a, b, c, a1, a2, an etc., denote identifiers orlabels for elements of structures in the type language; the set of
labels is calledΛ;

— α[β/t] denotes the substitution ofβ for t in α;

— Nil denotes a predefined type constant.

A.2 Type system

The type system contains type constants, functions, cartesian products, records, tagged unions recursive definitions. The
type language,Type, is given by the grammar in figure 1.

a ::= t

| ⊥

|

| α → β

| α1 × ... × αn

| 〈a1 : α1, ..., an : αn〉

| [c1 : γ1, ..., cn : γn]

| µt.α

Figure 1 - Abstract syntax for type declararations

ISO/IEC 10746-3: 1995 © ISO/IEC

70 ITU-T Rec. X.903 (1995)

The ground types are called (top) and⊥ (bottom). They play the roles of greatest and least elements in the subtype
relation, respectively. Functions are denoted thus:α → β. Cartesian products are denoted thus: α1 × ... × αn . Unions are
denoted thus: [c1 : γ1 ..., cn : γn]. Records are denoted thus:〈a1 : α1, ..., an : αn〉.

µ is a variable binding operator. Recursive types can be constructed by binding types to identifiers and referencing an
identifier for one type in another.

Parentheses are used to determine precedence where necessary. In their absence,→ associates to the right, and the scoping
of µ extends to the right as far as possible.

The set of free variables occuring inα is denoted thus:FV (α).

A.2.1 Typing rules

This clause gives type equality rules and subtyping rules for the language given.

A type α is contractive in the type variablet, denotedα ↓ t, if either t does not occur free inα, or α can be rewritten via
unfolding as a type of one of the following forms

— α1 → α2;

— 〈a1 : α1, ..., am : αm〉;

— [c1 : γ1, ..., cn : γn];

— α1 ×...× αn

The type equality rules are given in figure 2. Type equality is denoted by=.

The subtyping rules are given in the form of inference rules on judgments that resemble a Prolog program. Judgements are
of the form: Γ α ≤ β, whereΓ is a set of subtyping assumptions on type variables of the form:{t1 ≤ s1, ..., tn ≤ sn}. A
typical rule may take the following form

Γ α1 ≤ β1, Γ α2 ≤ β2 ⇒ Γ α ≤ β.

Informally, this means that in order to determine whetherΓ α ≤ β holds, one must first try to determine whether
Γ α1 ≤ β1 andΓ α2 ≤ β2. If these sub-goals are reached then one may conclude thatα is a subtype ofβ.

(E.1) α = α

(E.2) α = β ⇒ β = α

(E.3) α = β, β = γ ⇒ α ⇒ γ

(E.4) α1 = α2, β1 = β2 ⇒ α1 → β1 = α2 → β1

(E.5) α = β ⇒ µt.α = µt.β

(E.6) ∀i ε {1, ..., n}, αi = βi ⇒ α1 × ... × αn = β1 × ... × βn

(E.7) ∀i ε {1, ..., n}, αi = βi ⇒ 〈a1 : α1, ..., an : αn〉 = 〈a1 : β1, ... ,an : βn〉

(E.8) ∀i ε {1, ..., n}, αi = βi ⇒ [a1 : α1, ..., an : αn] = [a1 : β1, ... ,an : βn]

(E.9) µt.t = ⊥

(E.10) α[µt.α/t] = µt.α

(E.11) α[β/t] = β1, α[Β2/t] = β2 α ↓ t ⇒ β1 = β2

Figure 2 - Type equality rules

© ISO/IEC ISO/IEC 10746-3: 1995

ITU-T Rec. X.903 (1995)71

The subtyping rules are given in figure 3. It can be said thatα is a subtype ofβ if ∅ α ≤ ß can be derived using the
subtyping rules and the equality rules.

A.2.2 Type definitions

Elements ofType are defined by sets of mutually dependent equations, modelled as well-formed environments. An
environment is a finite mapping between type variables and types belonging toT, whereT is the non-recursive subset of
Type. A well-formed environmentϒ is an environment such that the free variables of a typeα associated with a variablet
in the domain ofϒ all belong to the domain ofϒ. Intuitively, each type variable in an environment represents a type. The
associations between type variables and elements ofT in an environment can be understood as mutually dependent defining
equations for the corresponding types.

Formally, letϒwf be the set of well-formed environments and definef : A→f B as a partial function fromA to B with finite
domain;FV(α) denotes the set of free variables occurring inα):

ϒwf = def {ϒ : Tvar →f Type | ∀ t, t' ∈ dom (ϒ), t' ∈ FV (ϒ (t)) ⇒ t' ∈dom (ϒ)}

Let ϒ = {t α, t1 α1, ..., tq αq}. ϒ \ t denotes the following environment:
ϒ \ t = def { t1 α1 ,...,tq αq}

The type associated with a type variablet in the context of a well-formed environmentϒ (t ∈ dom (ϒ)) is defined to be
Val (t, ϒ), whereVal is the function on types and environments defined recursively in figure 4. Thus any element ofType
can be defined asVal (t, ϒ), whereϒ is a well-formed environment andt ∈ dom(ϒ).

A.2.3 An algorithm for type checking

This clause defines an algorithm for type checking which is sound and complete with respect to the type equality and
subtyping rules above. The algorithm involves two well-formed environmentsε1 andε2 such thatdom(ε1) ∩ dom(ε2) = ∅
(the types to be compared are associated with two variables one inε1 and the other inε2). It is described as a set of inference
rules involvingε = def ε1 ∪ ε2 and a setΣ of the form {t1 ≤s1,,tn ≤sn} which records inclusion of variables discovered
during execution of the algorithm. An inference rule corresponds to a logical implication ofjudgements of the form

(S.1) α = β ⇒ Γ α ≤ β

(S.2) Γ α ≤ β, Γ β ≤ γ ⇒ Γ α ≤ γ

(S.3) t ≤ s ∈ Γ ⇒ Γ t ≤ s

(S.4) Γ ⊥ ≤ α

(S.5) Γ α ≤

(S.6) Γ α2 ≤ α1, Γ β1 ≤ β2⇒ Γ α1 → β1 ≤ α2 → β2≤

(S.7) ∀ι ε {1, ..., n}, Γ αi ≤ βi ⇒ Γ 〈a1 : α1, ..., am : αm〉 ≤ 〈a1 : β1, ... ,an : βn〉
with n≤ m

(S.8) ∀ι ε {1, ..., n}, Γ αi ≤ βi ⇒ Γ [a1 : α1, ..., an : αn] ≤ [a1 : β1, ... , an : βn]
with n≤ m

(S.9) ∀ι ε {1, ..., n}, Γ αi ≤ βi ⇒ Γ α1 × ... × αn ≤ β1 × ... × βn

(S.10) Γ ∪{t ≤ s} α ≤ β ⇒ Γ µt.α ≤ µs.β
with t only inα; s only inβ, t, s not inΓ.

Figure 3 - Subtyping rules

ISO/IEC 10746-3: 1995 © ISO/IEC

72 ITU-T Rec. X.903 (1995)

Σ, ε α ≤ β. A judgement intuitively captures the assertion α ≤ β holds in the context ofΣ and ε. Initial judgements
{ t1 ≤ s1,,tn ≤sn} must be such that {t1, s1,,tn, sn} ∩ dom(ε) = ∅.

The inference rules are given in figure 5. In figure 5α, β ∈ Type, t, sdenote arbitrary variables,u denotes variables not in
dom(ε).

Given an initial goalΣ, ε α ≤ β, the algorithm consists in applying the inference rules backwards, generating subgoals in
cases (rec), (fun), (rcd), (pro) and (uni). A tree of goals built in this way is called an execution tree. An execution tree is
always finite: ift ≤ s is an assumption that is added toΣ, thent ands are type variables indom(ε); also, the rules (fun), (pro),
(uni) and (rcd) reduce the size of the current goal by replacing it with subexpressions of the goal, and each application of
(rec) enlargesΣ.

An execution treesucceeds if all the leaves correspond to an application of one of the rules (assmp), (bot), (top) or (var). It
fails if at least one leaf is an unfulfilled goal (i.e. if no rule can be applied to it). If the execution tree corresponding to the
goal ∅, ε α ≤ β succeeds, this is notedA α ≤ β.

Given recursive typesαandβ, such thatα = Val (t1, ε1) andβ = Val (t2, ε2) (ε1 andε2 as above) a subtyping relation,≤A, is
induced by the algorithm by the following definition:α ≤A β ⇔ A t1 ≤ t2.

(IT.1) Val (⊥, ϒ) = ⊥

(IT.2) Val (, ϒ) =

(IT.3) Val (Nil, ϒ) = Nil

(IT.4) Val (α → β, ϒ) = Val (α, ϒ) → Val (β, ϒ)

(IT.5) Val (〈a1 : α1, ..., an : αn〉, ϒ) = 〈a1 : Val (α1, ϒ), ... ,an : Val (αn, ϒ)〉

(IT.6) Val ([a1 : α1, ..., an : αn], ϒ) = [a1 : Val (α1, ϒ), ..., an : Val (α1, ϒ)]

(IT.7) Val (α1 × ... × αn, ϒ) = Val (α1, ϒ) × Val (αn, ϒ)

(IT.8) if t ∉ dom(ϒ) then Val (t,ϒ) = t

(IT.10) if t ∈ dom(ϒ) then Val (t,ϒ) = µt.Val (ϒ (t), ϒ \ t)

Figure 4 - Semantics of interface type definitions

(assmp) t ≤ s ∈ Σ ⇒ Σ, ε t ≤ s

(bot) Σ, ε ⊥ ≤ β

(top) Σ, ε a ≤

(var) Σ, ε u ≤ u

(fun) Σ, ε α2 ≤ α1, Σ, ε β1 ≤ β2 ⇒ Σ, ε α1 → β1 ≤ α2 → β2≤

(rcd) ∀ι ∈ {1, ..., n}, Σ, ε αi ≤ βi ⇒ Σ, ε 〈a1 : α1, ..., an : αn〉 ≤ 〈a1 : β1, ... ,an : βn〉
with n≤ m

(uni) ∀ι ∈ {1, ..., n}, Σ, ε αi ≤ βi ⇒ Σ, ε [a1 : α1, ..., an : αn] ≤ {a1 : β1, ... , am : βm]
with n≤ m

(pro) ∀ι ∈ {1, ..., n}, Σ, ε αi ≤ βi ⇒ Σ, ε α1 × ... × αn ≤ β1 × ... × βn

(rec) Σ ∪ {t ≤ s}, ε ε (t) ≤ ε (s) ⇒ Σ, ε t ≤ s

Figure 5 - Type-checking inference rules

© ISO/IEC ISO/IEC 10746-3: 1995

ITU-T Rec. X.903 (1995)73

This new subtyping relation coincides with the previous one, i.e.,the algorithm is sound and complete with respect to the
type equality and type subtyping rules:

— givenα, β in T, if α ≤A β thenα ≤R β;

— givenα, β in T, if α ≤R β thenα ≤A β.

A.3 Signal interface signature types

Signal interface signature types are formalized by interpreting them in theType language. The set of signal interface
signature types is denotenotedTypesig. Elements ofTypesig are defined abstractly through the use of two functions:
intype: Typesig → Type andoutype : Typesig → Type. In a given signal interface signature type,intype describes the set of
initiating signals, andoutype describes the set of responding signals.

Elements ofType associated with a signal interface signature type through theintypeand outype functions are defined by
well-formed environments with codomain the subset ofType defined by the grammar in figure 6, where labels
ai, i ∈{1, ...,q}, are supposed to be distinct. In effect,figure 6 provides an abstract syntax for signal interface signatures.
Labelsai correspond to signal names.Arg productions correspond to signal parameters.Sigsig productions correspond to
individual signal signatures. The functional form adopted for individual signal signature highlights the analogy with
announcement signatures.

The subtyping relation on signal interface types,≤s, is defined by:
∀ ι1, ι2 ∈ Typesig, ι1 ≤ ι2 ≡ ι1.intype≤ ι2.intype i2.outype≤ι1.outype.

A.4 Operation interface signature types

Operationalserver interface signature types are formalized by interpreting them in theType language (operation client
interface signature types can be derived immediately by complementation). The set of operational server interface types is
notedTypeo (S). Elements ofTypeo (S) are defined abstractly through the use of the functionoptype: Typeo (S) → Type.

Elements ofType associated with an operation interface signature type through theoptype function are defined by well-
formed environments with codomain the subset ofType defined by the grammar in figure 7, where labelsai, i ∈{1, ...,q},
are supposed to be distinct, and where labelsci, i ∈{1, ...,q} are supposed to be distinct in the context of anOpsig
production.

In effect, figure 7 provides an abstract syntax for operation interface signatures.Opsig productions correspond to individual
operation signatures. Specifically,Opsig productions of the formArg → Term in figure 1 correspond to interrogations.

α ::= 〈ai : Sigsig, ..., aq : Sigsig〉

Sigssig ::= Arg → Nil

Arg ::= Nil | t1 × ... × tp

Figure 6 - Abstract syntax for signal interface signature types

α ::= 〈ai : Opsig, ..., aq : Opsig〉

Opsig ::= Arg → Term| Arg → Nil

Term ::= [c1 : Arg, ..., cq : Arg]

Arg ::= Nil | t1 × ... × tp

Figure 7 - Abstract syntax for operation interface signature types

ISO/IEC 10746-3: 1995 © ISO/IEC

74 ITU-T Rec. X.903 (1995)

Opsig productions of the formArg → Nil correspond to announcements.Arg productions correspond to invocation
parameters.Term productions correspond to terminations.Nil on the left hand side of anOpsig production means that the
given invocation does not have any parameter.Nil on the right hand side of anOpsig production (i.e, in an announcement
signature) means that no termination is expected. Labelsai correspond to operation names. Labelsc1 correspond to
termination names.

The subtyping relation on server operational interface types,≤o, is defined by:
∀ ι1, ι2 ∈ Typeo (S), ι1 ≤ ι2 ≡ ι1.optype≤ ι2.optype.

A.5 Stream interface types

Defining complete signature subtyping rules for stream interfaces is beyond the scope of this Reference Model (see 7.2.4.2).
Note however that an individual flow signature type can be formalized by interpreting it in theType language. Elements of
Type associated with a flow signature can be defined by well-formed environments with codomain the subset ofType
defined by the grammar in figure 8, where labelai corresponds to the flow name.

The subtyping rule in clause 7.2.4.2 associated with corresponding flows (assuming they have the same causality) just
corresponds to the subtype relation,≤, in this case.

A.6 Example

Consider the following server operation interface signature type definitions (i.e., the well-formed environment)
ϒ = {t α, ft β}

where
α =def 〈 op : t → [ok : Nil, nok : Nil], factory : Nil → [ok : ft] 〉
β =def 〈 new : Nil → [ok : t] 〉

and wheret, ft ∈ Tvar; op, factory, new, ok andnok∈ Λ (op, factory andnew are operation names;ok andnok are termination
names).

Intuitively, the environmentϒ corresponds to the definition of two types,t andft. ft is equipped with only one operationnew,
that takes no argument and returns a reference to an instance of typet. One may imagine, for instance, thatft is the type of
a factory object that creates objects with an interface of typet on demand, i.e.,on each invocation of operation new.t is
equipped with two operations:op andfactory. Operationop takes a reference to an instance of typet as argument: this is a
first instance of a recursive definition. Operationfactory takes no argument and returns a reference to an instance of typeft.
One may imagine for example that, for management purposes, each object with an interface of typet is able, on request (i.e.,
upon invocation of operationfactory), to return a reference to the factory that created it. This is a second instance of a
recursive definition, since the definition offt refers tot.

Applying the definition ofVal given above, definingϒ1 =def { ft β}, overloading the= sign and using type equivalence
rule E.10 the following is obtained:

Val (t, ϒ) = µ t. Val (α, { ft β }
= µ t. 〈op : Val(t, ϒ1) → [ok: Nil, nok : Nil],
factory: Nil → [ok : Val (ft, ϒ1)]〉
= µ t. 〈op : t → [ok: Nil, nok : Nil],

α ::= 〈ai : Flowsig〉

Flowsig ::= Arg → Nil

Arg ::= Nil | t

Figure 8 - Abstract syntax for stream interface signature types

© ISO/IEC ISO/IEC 10746-3: 1995

ITU-T Rec. X.903 (1995)75

factory: Nil → [ok : µ ft.Val (β, ∅)]〉
= µ t. 〈op : t → [ok: Nil, nok : Nil],
factory: Nil → [ok : µ ft.〈new : Nil → [ok : t]〉]〉
= µ t. 〈op : t → [ok: Nil, nok : Nil],
factory: Nil → [ok : 〈new : Nil → [ok : t]〉]〉.

ISO/IEC 10746-3: 1995 © ISO/IEC

76 ITU-T Rec. X.903 (1995)

