
1

What's a Platform?

Joaquin Miller
Chief—Architecture Review

X-Change Technologies

www.xchangetechnologies.com

Views of
Model Driven Architecture

in Finance

2

2

Outline

• Uses of MDA by
financial institutions

• The several MDAs:
uses of model transformation

• A language lesson

3

3

MDA successes

• Wells Fargo Bank

• Postgirot Bank AB

• Deutsche Bank Bauspar

This talk is not about financial systems. I pick these examples for focus; since
I have been working on Wall Street for the last four years; and because one
important economic trend in East Asia is consolidation of financial institutions
across national borders.

4

4

Wells Fargo
Goal

Integrate the legacy system
of newly acquired banks
during rapid expansion

The first example example is from my home, the San Francisco BayArea. This
example illustrates one important point of this talk: MDA is not just about
building new applications. It bring benefits in every area of information
technology. This example shows the use of MDA in integrating existing
legacy systems.

5

5

Wells Fargo
Starting Point

Build a model of the legacy systems,
which is:

• Consistent
• Platform independent

6

6

Wells Fargo
Model Driven Approach

• Define the application in a
platform independent UML model

• Generate UML platform specific models
• Augment the model

with any additional code needed
• Generate the application programs

7

7

Wells Fargo
Generated Code

• Business Service Interfaces (C++ & Java)
• Proxies (C++ & Java)
• IDL
• Bridges
• Servants
• Legacy Wrappers

8

8

Wells Fargo
Underlying Platforms

CICS, COBOL, on Hitachi
Unix for new applications, on HP
Microsoft NT for users, on PCs

IMS, DB/2, Informix, Oracle

CORBA

9

9

Wells Fargo
Integration Platform

The important platform, for which the platform
specific models are generated, is not these
languages, operating systems, database
managers, and middleware.

The platform is the Wells Fargo integration
architecture, which gives developers uniform
access to all the other Wells Fargo platforms.

“In the middle is the system I am responsible for. It encapsulates these systems
[of record] and provides a distributed environment that supports our client
applications. We call this environment Wells Frame. It's an object-based
framework that normalizes the disparate systems into a consistent enterprise
model and provides a standard, consistent logical view to the client team. The
enterprise model is described in UML for our clients. It is also expressed as
CORBA interfaces for the application developers. Wells Frame is platform-
and language-neutral as a result of being based on UML and CORBA.”

— Eric H. Castain, a senior vice president of Wells Fargo

10

10

Wells Fargo
Benefit

Integration of newly acquired systems:

• Shorter time
• Lower cost
• Fewer errors

“In the middle is the system I am responsible for. It encapsulates these systems
[of record] and provides a distributed environment that supports our client
applications. We call this environment Wells Frame. It's an object-based
framework that normalizes the disparate systems into a consistent enterprise
model and provides a standard, consistent logical view to the client team. The
enterprise model is described in UML for our clients. It is also expressed as
CORBA interfaces for the application developers. Wells Frame is platform-
and language-neutral as a result of being based on UML and CORBA.”

— Eric H. Castain, a senior vice president of Wells Fargo

11

11

Postgirot Bank
Goal

Payment services in Sweden

Currently, two million transactions per day.

Entirely new system,
to replace existing systems

Goals:
Capture new markets quickly by allowing fast implementation of new products and product features in order to decrease time to
market of new product.
One flexible information system supporting all the payment transmission business. A system that is future proof.
Better insight and lower operational costs by using online, real time processing capabilities and straight through processing.
Integration with the other systems both internal and external to Postgirot.

Low deployment and maintenance costs.
Scalability to up to to much higher transaction rates.

12

12

Postgirot Bank
Code Generated; Platform

Complete generation of:
• code
• database schema
• deployment scripts.

OS/390, Cobol and DB2.

13

13

Postgirot Bank
Benefit

The time to recover the cost through savings is
estimated to be less then two years
based only on the maintenance costs
of the old system.

Results:
Financial Gain - The operational cost are reported to have been reduced by 80% compared to the old situation.
Flexibility - New products can be added quickly. New technology can be introduced and quickly integrated with legacy systems.
Scalablity - The solution can grow to 30 Million transactions per day.

14

14

Postgirot Bank
Benefit

Since code was generated from Platform
Independent Models (PIMs) Postgirot can
easily switch to J2EE or another technology.

15

15

Deutsche Bank Bauspar
Goal

Customer service in mortgage lending
and loan management

Interfaces for sales staff, and for
customers, and for back office

Front ends for legacy systems

16

16

Deutsche Bank Bauspar
Platforms

COBOL, CICS, and DB2 on IBM
BEA WebLogic
Oracle

17

17

Deutsche Bank Bauspar
Benefits

The new system serves three different
types of users from a single application
core.

• Customers view contracts via the web
• Sales and field staff view and calculate
• Back office staff verify and process

18

18

Current Attempts

• Large Korea Bank

• Large Japan Bank

Here is some information I have gathered recently, about the use of MDA in
East Asia

19

19

Large Korea Bank

Trying out MDA

for its next generation bank system

20

20

Large Japan Bank

One goal is:

straight through development
from design to coding
and
rapid turnaround of the system.

21

21

Market Movers

• IBM

• Borland

• Microsoft

Another way for you to evaluate MDA is to see what software vendors are
doing.

22

22

IBM

Acquired the Rapid Developer tool,
is promoting “A-RAD” and that tool for
web front ends to COBOL systems

Acquired the Rational XDE tool which includes
pattern specification and application,
generation of code skeletons, and
code generation from code templates

A new development tool, based on Eclipse
will imbed a MOF in every Java application

When it bought Rational, IBM acquired the NeuVis software product, Rapid Developer, which
it is now promoting for what it calls A-RAD, targeted at COBOL shops wishing to add web
front ends.

IBM's new development tool, based on Eclipse, will imbed a MOF in every Java program, so
that programs can refer to models during execution.

23

23

Borland

Acquired the ECO development tool
UML model to Delphi/Object Pascal application

Acquired Together Edition for Eclipse
adds modeling to Eclipse,
synchronizes model and code on the fly

Borland acquired BoldSoft, obtaining world class OCL expertise and a
complete MDA product (now called ECO), which maps a problem domain
UML diagram into a complete working application using Delphi/Object
Pascal.
Prior to being acquired by Borland, TogetherSoft had developed Together
Edition for Eclipse, which adds a modeling perspective to Eclipse, with on-
the-fly synchronization between model and code, so models are reflected
instantaneously in code skeletons, and changes to the code skeletons are
reflected in the model.

These code skeletons do include much code. For example, if the programmer
applies J2EE patterns to the model, the resulting code skeleton will compile
and run if deployed, but there will be no business logic in the methods.

24

24

Microsoft

Abandoning its ORM language,
adopting UML for Visual Studio

Seems to be moving toward MDA

25

25

Microsoft

• “Abstraction”

• “Build to change”

• “All platforms

• “The shortest time for
building/deployment”

26

26

The small MDA

MDA is most often thought of in terms of
design and construction.

Design the program using a model.
Generate the code.

27

27

smallMDA Transformation

PIM

PSM

Transformation

28

28

smallMDA Transformation

A PSM does not have to be
program code.

Several transformations can produce
code, database schemas, deployment
descriptors, test cases, XML schemas…

29

29

The big MDA

But the underlying idea of MDA is
transformation of models.

The forthcoming OMG MOF QVT
technology will enable specification of
general model transformations.

30

30

Transformation

Notice the software in the background. It requires twenty-three diskettes of
software to carry out this simple transformation from a robot to a bulldozer.
That is quite a bit of software, but the results are extraordinary.

31

31

bigMDA Transformation

PIM

PSM

Transformation

a model

another

PIM

PSM

Transformation

a model

another

32

32

bigMDA Transformation

Examples:
• Korean business custom
ð Japanese business custom

• Java design ð J2EE design
• Program model + data model
ð object-relational mapping code

• WebSphere design ðWebLogic design

33

33

bigMDA Transformation

Examples:
• Korean business custom
ð Japanese business custom

• Java design ð J2EE design
• Program model + data model
ð object-relational mapping code

• WebSphere design ð .NET design

34

34

The jumbo MDA

In fact, model transformations
are valuable and practical
throughout the software process.

35

35

The jumbo MDA

Examples:
• Understanding requirements
• Synthesizing designs
• Traceability
• Combining models

36

36

ODP Viewpoints

• Enterprise
• Information
• Computational
• Engineering
• Technology

www.joaquin.net/ODP

Here is one example of the application of MDA technology in a way that
might not be expected. This will be an extensive example. At the same time
we set up the environment for the example, we will also see an example of the
use of another important architecture, the Reference Model of Open
Distributed Computing, RM-ODP.

37

37

Instructions

Comparison

Information

Information

Information

Instructions

Instructions
Instructions

Enterprise View

Settlement
Service

/Owner

/Depository

/Settlement
Agent

/Customer

/Information
Supplier

The model shows the system, Settlement Service, in its environme nt, specified
from the ODP Enterprise viewpoint.

The other boxes represent roles of parties and other systems, and the lines
show interactions with the system.

The system provides services to clear and settle trades of financial instruments.

38

38

Instructions

Comparison

Information

Information

Information

Instructions

Instructions
Instructions

Enterprise View

Settlement
Service

/Owner

/Depository

/Settlement
Agent

/Customer

/Information
Source

One of the interactions is between the Settlement Service and other settlement
agents, comparing instructions to ensure that both sides of the transaction
agree on the terms. This particular interaction will come up again later in the
example. It will be used to illustrate the use of MDA model transformation to
detect failure of a detailed design to meet the original intent.

39

39

Information View—Data
Business

Communication
Business

Transaction

Account

Party

Classification
Scheme

Currency

Product

results in

affects
affects

participates
in

offere
and uses

uses
 is for

manages
positions

in

issues & defines the
jurisdiction for the

use of

Location

uses

manages and
owns

Financial
Instrument

is
performed

 withis
performed

 in

involves

required
by

uses

mentions
everything

Arrangement

establishes
& manages

applies to
everything

applies to
everything

defines

uses

is involved with

exchanges

results in

Here is a sketch of part of the specification of the system from the ODP
Information viewpoint. The next slide shows a part of this model.

40

40

Information View—Data
Business

Transaction

Financial
Instrument

Deal

Party

This focuses on part of the structure of the data. The ODP Information
viewpoint specifies both the data, and the processing of the data. This model
represents only the data, but not its processing. The Information viewpoint
views the system as a monolith, not as a distributed system.

41

41

Information View—Data
Business

Transaction

Financial
Instrument

Deal

Party

If we focus on one class of information objects, the deal objects, we can add
some of the specification of the processing of the data, as shown on the next
slide.

42

42

Information View—Processing

Offered Agreed

Cleared

Rejection Clearance

Settlement

Acceptance

Counter-Offer

Offer

Business Transaction--Deal

This is a state diagram of Deal information objects. It shows the lawful states
of an object that represents a particular deal. The boxes represent those states.
The lines represent transitions from one state to another. The names on the
transitions identify the interactions that cause a state transition. For example,
one possible interaction is when one party communicated a rejection to
another party that made an offer. This terminates the attempted deal. On the
other hand, if a party communicates acceptance, the deal becomes agreed.

Further detail can be provided using a state machine language, such as UML.

43

43

Computational View
Customers

Coordinator
Depositories

&
Other Settlement Agents

Operators
&

Owner

MonitorPositionMatching

Information
Manager

Information Sources

The ODP computational viewpoint focuses on the specification of the system
as objects able to interact at interfaces. Here the objects are subystems of the
Settlement Service system. These subsystems interact with each other and
with systems and parties in the environment of the Settlement Service system.

44

44

Correspondence

RM-ODP requires the specifier provide
viewpoint correspondences

These relate elements in one view
to those in another view

www.joaquin.net/ODP/Part3/10.html
www.joaquin.net/WG17/DIS_15414_X.911.pdf

45

45

Correspondence

PIM

PSM

Transformation

a model

another

PIM

PSM

Transformation

a model

another

correspondence
rules

In the case with the least software support, the specifier will state the
correspondences as elements of a transformation.

With more support, a tool will check that the correspondences conform to the
correspondence rules.

46

46

Computational View
Customers

Coordinator
Depositories

&
Other Settlement Agents

Operators
&

Owner

MonitorPositionMatching

Information
Manager

Information Sources

Settlement
Service

Let’s look at the computational view of the system.

47

47

Instructions

Comparison

Information

Information

Information

Instructions

Instructions
Instructions

Enterprise View

Settlement
Service

/Owner

/Depository

/Settlement
Agent

/Customer

/Information
Source

And let’s compare that with the Enterprise view. In this drawing the
Settlement Service system appears as a single object; in the previous,
Computational view, it appeared as several interacting subsystems.

48

48

Computational View
Customers

Coordinator
Depositories

&
Other Settlement Agents

Operators
&

Owner

MonitorPositionMatching

Information
Manager

Information Sources

Settlement
Service

Here is the computational view again. Do you see any discrepancy. Look
back at the Enterprise view.

49

49

Computational View
Customers

Coordinator
Depositories

&
Other Settlement Agents

Operators
&

Owner

MonitorPositionMatching

Information
Manager

Information Sources

Settlement
Service

Look at the interface on the right side of the Coordinator subsystem object.
The interface that is used by other settlement agents is also used by
Depositories.

50

50

Instructions

Comparison

Information

Information

Information

Instructions

Instructions
Instructions

Enterprise View

Settlement
Service

/Owner

/Depository

/Settlement
Agent

/Customer

/Information
Source

But settlement agents not only receive instructions, they also collaborate in
comparisons. An interface is missing from the Computational view.

51

51

Comparison

Instructions

Enterprise View

Settlement
Service

/Settlement
Agent

The notation of the previous drawings was not as expressive as it should be.

Rather than abuse the UML interaction notation, by using an arrow to
represent the joint action of comparing settlement instructions, a joint action of
the settlement service together with another system in the role of settlement
agent , it will be much better to represent this graphically as a joint action.
That is, an action of more than one object.

A deficiency of UML 2 is the absence of the concept of joint action. Here I
press the UML notation for a collaboration into service. The UML 2
specification tells us “Collaborations are generally used to explain how a
collection of cooperating instances achieve[s] a joint task or set of tasks.”

This use of a collaboration to represent a joint action could be explained in
UML terms as using an abstract collaboration, which does not yet explain how
the collection of cooperating objects achieves the joint task.

52

52

jumboMDA in practice

ODP Information and Computational
viewpoint specifications

+
Architecture transformation specification
ð
ODP Engineering and Technology

viewpoint specifications

A tool aware of viewpoints and correspondence rules might generate many of
the correspondences. If the tool is following an architecture specification, that
might be in the form of correspondence rules which the tool uses to both
generate the correspondences and the corresponding model. This could be
done by following the computation to engineering viewpoint correspondence
rules of RM-ODP. Tools using the Shlaer-Mellor approach, such as the
Project Technology tool, are, in effect, performing a computational and
information viewpoint to engineering viewpoint transformation, using the
correspondence rules in the project specific architecture specification.

53

53

jumboMDA in practice

Example:
• Component based development

54

54

jumboMDA in practice

Example:
• Comparing component C1
ð Component C2

to check for substitutability

55

55

Language Lesson

This is not a lesson in English.

Nor a lesson in Korean, nor Japanese,
nor Cantonese, Mandarin, Wu, Hakka…

56

56

Language Lesson

The usages of these two words
are common to the popular
technical vocabulary of all languages:

Object

Component

57

57

Object
English: an individual thing

ODP: a model of something

UML 2: an instance of a class

UML 2 takes the meat out of the word, ‘object,’ leaving it with a much
narrower and more specific meaning. Though a UML class can be used to
represent anything, Class has been tailored to suit programming language
classes.

58

58

Component
English: a part

ODP: a part (of a composite)

UML 2: a modular part of a system
that encapsulates its contents and
whose manifestation is
replaceable within its environment.

Component

59

59

Language Lesson

The popular usages of these two words
is something we will have to live with.

Unfortunately, it results in a
unnecessary
complication of our language.

This is one of the unfortunate results of UML being a class-oriented language,
inspired by Ada and C++ and now driven by and focused on Java.

Why is this an unfortunate result? Because the architect has no general
purpose model element that can be used, without choosing how a particular
item in the system will be implemented. If the item will be implemented by
sending new to a class, then the architect must use a class and an “instance
specifications of a class.” If the item will be implemented using another
technology, then the architect must use a component (or other structured
classifier) and an “instance specifications of a component.”

If UML were “compatible with the architecture for system distribution defined
in ISO/IEC 10746, Reference Model of Open Distributed Processing (ODP),”
as required in clause 5.1.12 of the UML RFPs, then the architect could use
objects (and types of objects) in the specification, and leave for later the choice
of implementation technology.

A user of UML 2 can ignore restrictive statements in the text of the
specification, but there is not one single UML 2 classifier that meets the
requirements of a software architect for both abstraction and full general
capabilities: all the classifiers given by UML 2 are specialized.

Of course, UML 2 is simply following the current popular use of ‘component’
to mean a program part in the Big Bill COM and .NET style, the Java
Enterprise Edition style, and the CORBA component model, a generalization
of J2EE. That’s why the meaning of the word, ‘component,’ has been
changed, and that was not made by the authors of UML 2. It was made by all
of us, following marketeers and the press.

The point of this lesson is to remind ourselves that it is a loss to our languages

60

60

Summary
• Uses of MDA by

financial institutions
• The several MDAs:

uses of model transformation
• An introduction to ODP
• A caution about losses

to our shared language

We slipped into the outline a mini-tutorial on ODP, just a taste.

61

What's a Platform?

Please look for
the latest version of these slides

at

www.joaquin.net

Views of
Model Driven Architecture

in Finance

After the BOSC 2003 Keynote in Seoul, and based on your questions and
feedback, some changes may be made in these slides. The revised slides will
be posted at www.joaquin.net/presentations

62

What's a Platform?

Joaquin Miller

www.joaquin.net

Views of
Model Driven Architecture

in Finance

Thank you very much for your invitation and your attention today.

Cordially,

Joaquin

